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1. Introduction 

Cluste analysis is the name 
given to a bodylof methods for parti- 
tioning a heterogeneous collection of 
objects into groups or clusters in which 
the objects tend to be similar. In this 
paper a particular type of cluster anal- 
ysis is introduced and applied to the 
problem of classifying geographic sub- 
areas of a city into a meaningful 
typology. The objects to be classified 
here are census tracts of a city, each 
tract having a set of variables associ- 
ated with it. Tracts are considered to 
be similar or to belong to the same 
cluster if their values on these vari- 
ables are similar according to some 
criterion. The description of the cri- 
terion function sed in clustering will 
be more conceptu 1 than rigidly mathe- 
matical. The reader who is acquainted 
with matrix algebra will find a complete 
discussion of the subject in Rubin and 
Friedman [1]. The main purpose of this 
paper is to show some of the advantages 
of one type of cluster analysis over 
methods now in common use. To aid in 
this, both artif cial examples and 
results of analy es performed on tracts 
of Washington, D. C. will be given. 

Before discussing the method of 
clustering used n this paper, we will 
review two commoily used methods of 
classification: summed -ranks and prin- 
cipal components, This will give some 
indication of the problems encountered 
in classification. 

2. Summed -ranks 

The method of summed -ranks will 
be introduced by first discussing the 
method of ranking on one variable. 

EXAMPLE: Suppose we wish to 
partition a set of 12 census tracts on 
the basis of median family income. (See 
Table 2a at end of text.) The tracts 
are ranked from lowest to highest on 
income as shown in Table 2b. If the 
tracts were to be divided into 2 groups, 
all tracts with ranks 1 -6 would be in 
one group and all those with rank 7 -12 
would be in the other. Similarly if 3 
groups were to be formed, the first 
group would contain tracts with ranks 
1 -4; the second group, ranks 5 -8; and 
the third group, ranks 9 -12. 

Let us n w plot the income of 
the 12 tracts and denote the partition 
into 2 and 3 grow s by the parentheses 
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around the representing income 
(Figures 2a and 2b). Two difficulties 
become clear here: 

a. There is no indication 
what the optimum number of groups is. 

b. Even if we assume that 
either 2 or 3 isthe correct nunber of 
groups, the groups themselves do not 
appear to be "natural." 

As an example of b., notice that in the 
partition into 2 groups, the tract with 
income of $11,000 appears to be distant 
from others members of its group. This 
difficulty is caused by the distortion 
of distances in the ranking process. A 
grouping that might appeal to our intu- 
ition is given in Figure 2c. (Notice 
that we intuitively pick the "correct" 
number of groups while at the same we 
determine group composition.) This 
grouping seems reasonable because dis- 
tances between groups appear large with 
respect to distances between points in 
the same group. These distinctions 
disappear in ranking. The differences 
in income between tract 7 and 10 is 
$500 while that between tract 10 and 1 
is $5,000. The difference in ranks, 
however, is 1 in each case. (Table 2b). 

The method of summed -ranks is 
a simple extention of the method of 
ranking on one variable. Let p vari- 
ables be measured on each census tract. 
The tracts are ranked on each variable 
separately, the p ranks are summed for 
each tract, and this sum is finally 
ranked. 

EXAMPLE: Let each of 8 tracts 
have a median family income and median 
education of household head associated 
with it (Table 2c). Each tract can be 
plotted as a point in 2- dimensional 
space as shown in Figure 2d. Tracts 3 

and 7 exhibit quite different behavior 
and are therefore distant from each 
other on the graph. A glance at Table 
2c, however, reveals that they have the 
same rank. The difficulty here is that 
a 2- dimensional problem is being forced 
into 1 dimension. Although it was 
reasonable to order the tracts on each 
variable separately, there was no justi- 
fication for ordering the tracts on 
both variables simultaneously. Only in 
the case where two variables are highly 
correlated is it valid to represent 
their ordering by the summed -rank. 

The difficulties shown in this 
example occur in higher dimensions and 



are compounded with the problem of dis- 
tortion of distances, illustrated above 
in 1- dimension. 

A reverse type of problem can 
also occur. Assume three variables are 
measured on each tract and that two are 
highly correlated. These two variables 
may be different names for the same 
phenomenon and yet they are treated as 
being independent. They are therefore 
given more weight than they are due in 
the method of summed- ranks. 

3. Principal Components 

The method of principal com- 
ponents often allows us to replace an 
initial set of variables with one 
index number. The method is demonstra- 
ted graphically for the 2- dimensional 
case. Let two variables xl, x2 be 
measured on each tract and plotted as 
in Figure 3a. An axis is drawn through 
the origin such that the sum of squares 
of the perpendicular distances of the 
points to the axis is minimized. This 
axis is called the principal component. 
The tract is now represented by one 
number: the distance from the origin 
of its projection on the principal 
component axis. This number takes the 
form y = c1x1 + c2x2, where the c's are 
known constants. 

Representing each tract by its 
principal component value is justified 
only if the dispersion of points is 
primarily along the direction of the 
principal component axis. If this is 
the case, the tracts can be ranked and 
grouped on the basis of this value. 
This procedure gives rise to many of the 
same problems encountered in summed- ranks: 

a. One index number can use- 
fully replace the original variables only 
if the variation is primarily in the 
direction of the principal component 
axis. For this to happen the variables 
must be highly correlated. 

b. If the principal component 
values are ranked to form groups, the 
problem of distortion of distance and 
the number of groups to consider again 
arises. 

4. Cluster Analysis 

The particular clustering 
technique applied here explores the 
structure of multivariate data in search 
of "clusters" by means of a certain cri- 
terion function. Each object has p 
variables associated with it and there- 
fore can be represented by a point in 
p- dimensional space. The criterion 
function measures the ratio of the total 
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dispersion of all points to the pooled 
dispersion of points within clusters. 
The goal is to find a grouping or cluster 
ing of points which maximizes the crite- 
rion function. 

One- dimensional case 

Consider the configuration of 
points xl, x2, - --,x6 with the two possi- 
groupings shown in Figures 4a and 4b. 
The groups (or clusters) in 4a appear 

more compact, i.e. the dispersion or 
scatter of points within each group ap- 
pears small with respect to the total 
scatter of all points. 

Total scatter T is expressed 
mathematically as follows: 

6 6 

T = L (xi where 1/6 xi 
=1 i=1 

The pooled- within groups 
scatter W is given by 

= W1 + W2 

For Figure 4a, 
4 4 

W1 = (xi -54)2 where = 1/4 xi 
i =1 i =1 

6 6 

W2 = (xi-x2)2 where x2 = 1/2 xi 
i=5 

For Figure 4b, 
3 3 

W1 = (xi -71)2 where x1 1/3 xi 
i =1 i =1 

6 6 

W2 = (xi -x2)2 where i2 = 1/3 Z., xi 
i =4 i =4 

The criterion function is 
defined as the ratio T /W. Notice that 
T is constant under both groupings. 
Therefore maximizing T/W is equivalent 
to minimizing W. If the grouping in 4a 

is actually better than that in 4b then 
its value for W should be smaller. To 

find the optimum grouping into two clus- 
ters, all possible assignments of the 
points into two groups should be at- 
tempted until T/W is maximized. 

In general the criterion 
function for the 1- dimensional case is 

defined as follows. Let x be a variable 
measured over each of n objects (here 

tracts). 

Suppose the tracts are parti- 

tioned into g groups with the first group 

containing nl tracts with respective 
values x11, x12, - xlnl 



the second group containing n2 
tracts with respective values 

x21, )22, 

the g -th group containing n tracts with 
respective values 

xgl, xgn 
g 

Then total scatter is given by 

g ni 
(1) T= (xij -TT) 2 n 

j =1 

is the variance of the entire collection 
of points; 

g 
xij 

=1 j =1 

Pooled -within group scatter, 

= + w2 + - + Wg where 

(2) Wi = (xij ni 
j=1 

is the variance of points in the i -th 
group; 

ni 
= 

Criterion function = T /W. All 
possible assignments of n points into 
g groups are attempted. The grouping 
which maximizes T/W is considered 
optimum. 

Two -dimensional case 

Let two variables x, y be 
measured over each tract and the tracts 
be partitioned into g groups as in the 
preceding paragraph. (The notation for 
the subscripts of the y's will be the 
same as that for ¡the x's.) Then total 
scatter is given by the 2x2 determinant 
ITI 

where T 
n[cov(x,y)]T 

n[cov(xhy)]T n(y) 

g ni n[cov(x,Y3= 
(xij -ST) 

(yij -YT) 

and is given by equation (1). 

The expression for n( is completely 
analogous. 

I 

Pooled- within group scatter is 
given by IWI where 

W W1 + W2 + Wg 
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ni( Ox)? ni[cov(x,Y)]i 

where Wi = 

ni [cov (x,Y) ] i n±(0) 

ni( is given by equation (2), 

ni( is calculated in the same way, 

and 

ni[cov(x,Y)]i = 
j =1 

The criterion function is Ill/ IWI. 

It should be noted that the 
total scatter determinant 

= n2 - [cov(X,Y)]T} 

may be thought of as n2[(length of scat- 
ter) x (width of scatter) - (overlap due 
to correlation)], i.e. the total area of 
scatter. Similarly IWI can be consid- 
ered the pooled -within group area of 
scatter. As in the 1- dimensional case, 
all possible assignments of the n points 
into g groups are attempted. The group- 
ing which maximizes ITI/ IWI is consid- 
ered the optimum. 

The concepts presented above 
can be extended to any dimension p. In 
multivariate statistical theory, pxp 
determinants such as ITI and IWI (exclu- 
ding the factor of n2) are known as 
generalized variances and are often in- 
terpreted as representing volumes of 
dispersion. 

EXAMPLE: Calculation of cri- 
terion function for 2- dimensional case. 
Consider the partitioning into two groups 
of the following points: 
(0,6), (2,12), (10,2), (12,4), (12 -2), 
(14,4). 

The criterion function will be 
calculated for two possible clusterings 
into two groups (see Figure 4c). 

Clustering A: First group con- 
tains (0,6), (2,12). 

=1,ÿl 

2( = (0 -1)2 + (2 -1)2 2; 

= (6 -9)2 + (12 -9)2 = 18 

2[cov(x,y)]1 

(0- 1)(6 -9) + (2- 1)(12 -9) = 3 +3 = 6 



Second group contains (10,2), 
(12,4), (12 -2), (14,4). 

r2 = 12, Y2 2 

It is clear from the definition 

4(6 = 8; 4( = 24; 
of the criterion function that the diffi- 
culties observed in the methods of 

cov x, 
summed -ranks and principal components 

4 
[ ( y)]2 4 have been eliminated. Distance is pre - 

8 4 served by use of variances to measure 
W2 = dispersion, correlation between variables 

4 24 is accounted for by the covariance term in 
the scatter matrices, and the use of gen- 

10 10 eralized areas or volumes rids us of the 
W = W1 + W2 = notion of strict ordering of objects. 
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Clustering A: ITI / = 30.63 
Clustering B: / = 1.71 

It was obvious from Figure 4a 
that A is a much better clustering than 
B. This has now been verified by the 
larger value of A's criterion function. 

W = (10)(42) -102 420 -100 = 320 

Clustering B: First group 
contains (0,6), (2,12) (10,2), (12,4) 

6, Y1 = 6 

4( = 104; 4( = 56; 

4[cov(x,y)]1 = -52 

W1 = 

104 -52 

-52 56 

Second group contains (12, -2), 
(14,4). 

72 13, 72 1 

2( = 2; 

2( )2 = 18, 2[cov(x,y)]2 = 6 

2 6 

W2 
6 18 

W=W1 +W2 

= (106)(74)-(46)2 5728 

For both clusterings: 

8.33 4.33 

6( = 171.33; 107.33; 

6[cov(x,y)]T -92.67 

106 -46 

46 74 

ITI = 
171.33 -92.67 

-92.67 107.33 
= 91801.12 
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The question of how many groups 
to take remains. Regardless of the num- 
ber of groups taken, the total scatter 
remains the same. The pooled- within 
group scatter for the optimum grouping 
decreases, however, as the number of 
groups is increased. This, of course, 
causes an increase in ITI Experi- 
ence indicates that log ITI /IWI tends to 
reach a plateau at a certain point, and 
an increase in the number of groups gives 
diminishing returns. The point at which 
the plateau begins is taken as the opti- 
mum number of groups. 

5. A Clustering Computer Program 

An IBM computer program employ- 
ing the methods of section 4 has been 
written in G or H level FORTRAN and in 
360 assembler language. (See Rubin and 
Friedman [2]. Some of the material in 
this reference is identical to that in [1]. 
The remaining material concerns other 
methods of clustering and instructions 
for utilizing the programs.) In addition 
to performing the computations directly 
related to the determination of clusters, 
the program produces auxiliary output 
which is necessary for a complete under- 
standing of the clustering process. Two 
examples of this are the plot of tracts 
in eigenvector space and the calculation 
of discriminant weights. 

In any classification problem 
it is not unusual to have objects which 
do not clearly belong to any group. In 
analysis of the census tracts of Washing- 
ton, D. C., there were often tracts with 
values of certain variables which placed 
them far from the mean of any group. A 
plot of the tracts in a certain eigen- 
vector space (see [1]) enables us to 
identify such outliers. 

The discriminant weights indi- 
cate which variables play the greatest 



role in distinguishing one cluster from 
another. A complete discussion of dis- 
criminant analysis can be found in 
Anderson [3] and, Morrison [4]. 

Examples of eigenvector plots 
and discriminant weights are given in 
the next section. 

6. Clustering Census Tracts of 
Washington, p. C. 

Cluster analysis was applied 
separately to three different sets of 
variables measured on each census tract 
of Washington, D. C. The tracts compos- 
ing each cluster were listed in the out- 
put of the program mentioned in Section 
5. The mean value of every variable 
over each cluster was also computed. 
It is this set of mean values which 
characterizes the cluster. 

Data for two of the sets of 
variables, "conditions surrounding 
birth" (1969) and welfare (1967), came 
from agencies in the District of Colum- 
bia government. The tracts in this 
case were based On 1960 census tract 
boundaries and were 122 in number. 

The third set of variables was 
meant to serve a a general socio- 
economic indicator. The data and tract 
boundaries were taken from the 1970 Cen- 
sus. The 1970 tracts were 147 in number. 

Table 6a gives the mean values 
of the clusters formed on the basis of 
five "conditions surrounding birth" 
variables for the year 1969. There is a 
clear ordering from BEST to WORST groups 
simultaneously on all variables. It is 
worth noting the unequal number of 
tracts in each group. This would not 
have occurred in the method of summed - 
ranks. 

In practice the rule for 
determining the optimum number of groups 
is often quite vague. Exactly where the 
point of diminishing returns occurs in 
the criterion function is not always 
obvious. For this case, however, the 
choice seemed clelar. Table 6b indicates 
that it is reasonable to take three 
groups. 

The discriminant weights in 
Table 6c show that the percent of moth- 
ers under 20 years of age had a primary 
role although prenatal care was also 
important in distinguishing between BEST 
and MEDIUM groups. Age of mothers was 
again dominant, although to a less ex- 
tent, and both prenatal care and ille- 
gitimacy had secondary roles in distin- 
guishing MEDIUM from WORST groups. 
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The next set of variables con- 
sidered was the caseload, expressed as a 

percent of the population at risk, in 
each of four welfare categories (Table 
6d). Here there is a high degree of 
skewness with the great majority of 
tracts belonging to the BEST group. Al- 
though the group in the second column is 
labelled MEDIUM, it is the worst in 
AFDC. This is a clear case where the 
tracts cannot be ordered on all variables 
simultaneously. Table 6e demonstrates 
the difficulty in choosing the optimum 
number of groups. Either 3 or 4 seemed 
appropriate. 

Figure 6a is a plot of the 
tracts in eigenvector space as explained 
in [1]. The tracts in the BEST group are 
plotted as B's, etc. The BEST group ap- 
pears more compact than the other groups. 
By means of other output from the compu- 
ter program, it is possible to identify 
the outlying tract represented by the 
encircled "M" in the MEDIUM group and to 
determine which variables caused it to be 
so distant from its group mean. 

The clusters formed in an anal- 
ysis of four variables chosen as a gen- 
eral socio- economic indicator illustrate 
an interesting phenomenon (Table 6f). 
Although there is generally clear order- 
ing of all variables from BEST to WORST, 
the distinction sometimes disappears, as 
in comparing the matriarchy and over- 
crowding indices between the POOR and 
WORST groups. The incomplete plumbing 
index seems to be the dominant variable 
in distinguishing between these groups. 
The discriminant weights in Table 6g 
verify this. 

7. Additional Remarks 

The method of clustering dis- 
cussed in this paper is one of several 
which may be appropriate for classifying 
census tracts of a city. [2], for 
example, presents other methods and also 
considers various options to be used with 
the method applied here. In future stu- 
dies, we plan to use a hybrid clustering 
model which will employ judgments from 
subject matter experts as well as math- 
ematical techniques. One significant 
result of this will be the subjective 
weighting of variables before they are 
entered into the clustering process. 
At present all variables are assumed to 
be of equal importance. 
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Table 6-a 

CONDITIONS SURROUNDING BIRTH - 1969 

I 



CONDITIONS SURROUNDING BIRTH 

Table 6 -b 

Maximum Value of Criterion Function 
by Number of Groups 

NUMBER 
OF 

GROUPS 
CRITERION 
FUNCTION INCREMENT 

2 1.25 

1.21 

3 2.46 

.73 

4 3.19 

5 3.64 

.43 

6 

Table 6 -d 

WELFARE - 1967 

PUBLIC ASSISTANCE CATEGORIES 

GROUP MEANS IN PERCENT 

BEST MEDIUM WORST 

Old Age Assistance 2.7 7.7 9.0 

Aid to Families with Dependent Children 3.4 23.2 12.0 

Aid to Permanently and Totally Disabled .6 1.5 3.1 

General Public Assistance .2 .3 .6 

Number of Tracts 94 10 18 
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Table 6 -c 

Discriminant Weights Between Groups 

VARIABLES 
r 

DISCRIMINANT WEIGHTS 

Best- 
Medium 

Medium - 
Worst 

Mothers Under Age 20 .78 .51 

No or Inadequate 
Prenatal Care .45 .29 

Birth Weight 
Under 5 -1/2 Lbs. -.19 -.08 

Illegitimate Births -.002 .27 

Infant Mortality -.04 -408 

Table 6-e 

WELFARE - 1967 

MAXIMUM VALUE OF CRITERION FUNCTION 
BY NUMBER OF GROUPS 

Number of Groups Criterion Function Increment 

2 1.22 
.86 

.86 

1 

.76 

3 2.08 

4 2.94 

5 

6 



Figure 6-a 

PLOT OF, CENSUS TRACTS IN EIGENVECTOR 

SPACE OF WELFARE VARIABLES 

First 

Table 6 -f 

SOCIO VARIABLES 

GROUP DANS - 1970 

MEDIUM WORST 

Median Family Income $17,000 =8,600 16,700 

Matriarchy Index 15.9% 26.4% 38.4% 39.1% 

Overcrowding Index 1.9% 8.8% 22.4% 21.4% 

Incomplete Plumbing .8% 2.2% 2.1% 16.8% 

Number of Tracta 22 62 58 5 

This is not yet available from the 1970 Census. The values were estimated 
for each tract from a regression model developed by Westat Research, Inc., 
Rockville, Maryland. 

Table 

VARIABLES 

VARIABLES 
WEIGHTS 

POOR - WORST 

Median Family Income - .03 

Matriarchy Index - .21 

Overcrowding Index .05 

Incomplete Plumbing Index 1.10 
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